

Registered Nurses' Association of Ontario Vascular Access, Second Edition Best Practice Guideline June 2021

Reference List with Open Access Links Where Available

*Links active as of August 12, 2021

Recommendation 1.1

Citation	Open Access URL (where applicable)
39. Petroulias PL. Use of electronic tablets for	-
patient education on flushing peripherally inserted	
central catheters. J Infus Nurs. 2017;40(5):298-	
304.	
40. Park JY. Implementing a central venous	-
catheter self-management education program for	
patients with cancer. Eur J Oncol Nurs. 2016;25:1-	
8.	
41. Tan S-H, Lee K-C, Chao Y-FC, et al. Effects of a	-
family involvement program in patients with	
central-line insertion. Clin Nurs Res.	
2015;24(3):253-68.	
42. Hicks BL, Brittan MS, Knapp-Clevenger R.	-
Group style central venous catheter education	
using the GLAD model. J Pediatr Nurs. 2018;29:29.	
43. Vecchio AL, Schaffzin JK, Ruberto E, et al.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4
Reduced central line infection rates in children	<u>998326/pdf/medi-95-e3946.pdf</u>
with leukemia following caregiver training.	
Medicine (Baltimore). 2016;95(25):1-6.	-
44. Drews B, Macaluso M, Piper H, et al. Caregiver	-
education reduces the incidence of community- acquired CLABSIs in the pediatric patient with	
intestinal failure. Gastroenterol Nurs.	
2017;40(6):458-62.	
45. Altounji D, McClanahan R, O'Brien R, et al.	-
Decreasing central line-associated bloodstream	
infections acquired in the home setting among	
pediatric oncology patients. J Pediatr Oncol Nurs.	
2020;37(3):204-11.	
46. Raybin J, Tong S, King N, et al. CVAD homecare	-
management: investigating the use of a digital	
education tool during nurse-delivered instruction	
to parents for new central lines in children with	
cancer. Clin J Oncol Nurs. 2019;23(3):295.	

47. Pierik A, Martins DS, Casey L, et al. Use of	-
instructional videos to reduce central venous	
catheter complications in children with intestinal	
failure receiving home parenteral nutrition. Nutr	
Clin Pract. 2021.	
48. Emery D, Pearson A, Lopez R, et al. Voiceover	-
interactive PowerPoint catheter care education for	
home parenteral nutrition. Nutr Clin Pract.	
2015;30(5):714-9.	

Recommendation 2.1

Citation	Open Access URL (where applicable)
50. Bugaj TJ, Nikendei C. Practical clinical training	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5
in skills labs: theory and practice. GMS J Med Educ.	003146/pdf/JME-33-63.pdf
2016;33(4):Doc63	003140/pul/JML-33-03.pul
	-
51. Madenci AL, Solis CV, e Moya MA. Central	-
venous access by trainees: a systematic review and	
meta-analysis of the use of simulation to improve	
success rate on patients. Simul Healthc.	
2014;9(1):7-14.	
52. Peltan ID, Shiga T, Gordon JA, et al. Simulation	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4
improves procedural protocol adherence during	<u>591105/</u>
central venous catheter placement: a randomized	
controlled trial. Simul Healthc. 2015;10(5):270-6.	
53. Hebbar KB, Cunningham C, McCracken C, et al.	-
Simulation-based paediatric intensive care unit	
central venous line maintenance bundle training.	
Intensive Crit Care Nurs. 2015;31(1):44-50.	
54. Nakayama Y, Inagaki Y, Nakajima Y, et al. A	https://pubs.asahq.org/anesthesiology/article/125
practical training program for peripheral radial	/4/716/19595/A-Practical-Training-Program-for-
artery catheterization in adult patients: a	Peripheral-Radial
prospective, randomized controlled trial.	
Anesthesiology. 2016;125(4):716-23.	
55. Valizadeh L, Amini A, Fathi-Azar E, et al. The	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4
effect of simulation teaching on Baccalaureate	161096/
nursing students' self-confidence related to	<u> </u>
peripheral venous catheterization in children: a	
randomized trial. J Caring Sci. 2013;2(2):157-64.	
56. Toy S, McKay RS, Walker JL, et al. Using	https://journals.sagepub.com/doi/pdf/10.1177/23
learner-centered, simulation-based training to	82120516684829
icarrier centered, simulation based training to	02120310004023

improve medical students' procedural skills. J Med Educ Curric Dev. 2017;4:2382120516684829.	
57. Scholtz AK, Monachino AM, Nishisaki A, et al. Central venous catheter dress rehearsals: translating simulation training to patient care and outcomes. Simul Healthc. 2013;8(5):341-9.	-
58. Abu Sharour L, Subih M, Yehia D, et al. Teaching module for improving oncology nurses' knowledge and self-confidence about central line catheters caring, complications, and application: a pretest-posttest quasiexperimental design. J Vasc Nurs. 2018;36(4):203-7.	-
59. Jones GF, Forsyth K, Jenewein CG, et al. Research residents' perceptions of skill decay: effects of repeated skills assessments and scenario difficulty. Am J Surg. 2017;213(4):631-6.	-
60. Kelly LJ, Green A, Hainey K. Implementing a new teaching and learning strategy for CVAD care. Br J Nurs. 2015;24:S4-12.	-
61. Purran A. Evaluation of a PICC care training programme. Nurs Stand. 2016;30(20):45-50.	-
62. Archer-Jones A, Sweeny A, Schults JA, et al. Evaluating an ultrasound-guided peripheral intravenous cannulation training program for emergency clinicians: an Australian perspective. Australas Emerg Care. 2020;23(3):151-6.	-
63. Goodfriend L, Kennedy S, Hein A, et al. Implementation of a vascular access experience program to train unitbased vascular access champions. J Infus Nurs. 2020;43(4):193-9.	-
64. Balachander B, Rajesh D, Pinto BV, et al. Simulation training to improve aseptic non-touch technique and success during intravenous cannulation-effect on hospital-acquired blood stream infection and knowledge retention after 6 months: the snowball effect theory. J Vasc Acc. 2020; 1129729820938202. doi:	-

10.1177/1129729820938202. Online ahead of print.	
65. Wagner M, Hauser K, Cardona F, et al. Implementation and evaluation of training for ultrasound-guided vascular access to small vessels using a low-cost cadaver model. Pediatr Crit Care Med. 2018;19(11):E611-17.	-
66. AlShammari A, Inayah A, Afsar NA, et al. Evaluation of effectiveness of a paediatric simulation course in procedural skills for paediatric residents – a pilot study. J Pak Med Assoc. 2018;68(2):240-6.	-
67. Amick AE, Feinsmith SE, Davis EM, et al. Simulation-based mastery learning improves ultrasound-guided peripheral intravenous catheter insertion skills of practicing nurses. Simul Healthc. 2021.	-
68. Valizadeh L, Akbarzadeh B, Ghiyasvandiyan S, et al. The effects of role play simulation and demonstration on pediatric peripheral venous catheter insertion skill among nursing students: a three group experimental study. Nurs Midwifery Stud. 2021;10(1):1-6.	https://www.nmsjournal.com/article.asp?issn=232 2- 1488;year=2021;volume=10;issue=1;spage=1;epag e=6;aulast=Valizadeh
69. Hassanein SM, Tantawi HR, Sadek BN, et al. Impact of structured simulation-based and on-job training program on nurses' competency in pediatric peripheral intravenous cannulation: children's hospital experience. Nurse Educ Today. 2021;98:104776.	-
70. et al. Comparison of the effectiveness of the virtual simulator and video assisted teaching on intravenous catheter insertion skills and self- confidence: a quasi-experimental study. Nurse Educ Today. 2020;95:104596.	-
71. Lindenmaier TJ, Brown J, Ranieri L, et al. The effect of an e-learning module on health sciences students' venipuncture skill development. Can J Respir Ther. 2018;54(1):12-6.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5 882240/

72. Keleekai NL, Schuster CA, Murray CL, et al. Improving nurses' peripheral intravenous catheter insertion knowledge, confidence, and skills using a simulation-based blended learning program: a randomized trial. Simul. 2016;11(6):376-84.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5 345884/
 73. Oliveira L, Lawrence M. Ultrasound-guided peripheral intravenous access program for emergency physicians, nurses, and corpsmen (technicians) at a military hospital. Mil Med. 2016;181(3):272-6. 	https://link.springer.com/article/10.1186/s13049- 021-00897-z
74. Grudziak J, Herndon B, Dancel RD, et al. Standardized, interdepartmental, simulation- based central line insertion course closes an educational gap and improves intern comfort with the procedure. Am Surg. 2017;83(6):536-40.	-
75. Jagneaux T, Caffery TS, Musso MW, et al. Simulation-based education enhances patient safety behaviors during central venous catheter placement. J Patient Saf. 2017;04:04.	-
76. Thomas SM, Burch W, Kuehnle SE, et al. Simulation training for pediatric residents on central venous catheter placement: a pilot study. Pediatr Crit Care Med. 2013;14(9):e416-23.	-
77. Barsuk JH, Cohen ER, Mikolajczak A, et al. Simulation-based mastery learning improves central line maintenance skills of ICU nurses. J Nurs Adm. 2015;45(10):511-7.	-
78. Hernández-Padilla JM, Granero-Molina J, Márquez-Hernández VV, et al. Effects of a simulation-based workshop on nursing students' competence in arterial puncture. Acta Paulista de Enfermagem. 2016;29(6):678-85.	https://www.scielo.br/j/ape/a/PgzgQLyFGtHhCV5 58rtyn7J/?lang=en
79. Bayci AW, Mangla J, Jenkins CS, et al. Novel educational module for subclavian central venous catheter insertion using real-time ultrasound guidance. J Surg Educ. 2015;72(6):1217-23.	-
80. Oh EJ, Lee JH, Kwon EJ, et al. Simulation-based training using a vessel phantom effectively	https://journals.plos.org/plosone/article?id=10.13 71/journal.pone.0234567

improved first attempt success and dynamic needle-tip positioning ability for ultrasound-guided radial artery cannulation in real patients: an assessor-blinded randomized controlled study. PloS one. 2020;15(6):e0234567.	
 81. Ballard HA, Tsao M, Robles A, et al. Use of a simulation-based mastery learning curriculum to improve ultrasound-guided vascular access skills of pediatric anesthesiologists. Paediatr Anaesth. 2020;30(11):1204-1210 	-
82. Spencer TR, Bardin-Spencer AJ. Pre- and post- review of a standardized ultrasound-guided central venous catheterization curriculum evaluating procedural skills acquisition and clinician confidence. J Vasc Access. 2020;21(4):440-8.	-
83. Sanchez Novas D, Domenech G, Belitzky NG, et al. Simulation-based training for early procedural skills acquisition in new anesthesia trainees: a prospective observational study. Adv Simul (Lond). 2020;5:19.	https://link.springer.com/article/10.1186/s41077- 020-00135-z
84. Sattler LA, Schuety C, Nau M, et al. Simulation- based medical education improves procedural confidence in core invasive procedures for military internal medicine residents. Cureus. 2020;12(12).	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7 793434/
85. Ault MJ, Tanabe R, Rosen BT. Peripheral intravenous access using ultrasound guidance: defining the learning curve. J Vasc Access. 2015;20(1):32-6.	-

Recommendation 3.1

Citation	Open Access URL (where applicable)
86. Johnson D, Snyder T, Strader D, et al. Positive influence of a dedicated vascular access team in an acute care hospital. J Vasc Access. 2017;22(1):35-7.	-

87. Pitts S. Retrospective analysis of a pediatric vascular access program and clinical outcomes. J Vasc Access. 2013;18(2):114-20.	-
88. Savage TJ, Lynch AD, Oddera SE. Implementation of a vascular access team to reduce central line usage and prevent central line-associated bloodstream infections. J Infus Nurs. 2019;42(4):193-6.	-
89. McDiarmid S, Scrivens N, Carrier M, et al. Outcomes in a nurse-led peripherally inserted central catheter program: a retrospective cohort study. CMAJ Open. 2017;5(3):E535-9.	https://www.cmajopen.ca/content/cmajo/5/3/E 535.full.pdf
90. Marsh N, Webster J, Larsen E, et al. Expert versus generalist inserters for peripheral intravenous catheter insertion: a pilot randomised controlled trial. Trials. 2018;19(1):564.	https://trialsjournal.biomedcentral.com/articles/ 10.1186/s13063-018-2946-3
91. Steere L, Ficara C, Davis M, et al. Reaching one peripheral intravenous catheter (PIVC) per patient visit with lean multimodal strategy: the PIV5Rights™ Bundle. J Vasc Access. 2019;24(3):31-43.	https://meridian.allenpress.com/java/article/24/ 3/31/436378/Reaching-One-Peripheral- Intravenous-Catheter-PIVC
92. Hartman JH, Bena JF, Morrison SL, et al. Effect of adding a pediatric vascular access team component to a pediatric peripheral vascular access algorithm. J Pediatr Health Care. 2020;34(1):4-9.	-
93. Levit O, Shabanova V, Bizzarro M. Impact of a dedicated nursing team on central line-related complications in neonatal intensive care unit. J Matern Fetal Neonatal Med. 2020;33(15):2618- 22.	-

Recommendation 4.1

Citation	Open Access URL (where applicable)
94. Coventry LL, Jacob AM, Davies HT, et al.	-
Drawing blood from peripheral intravenous	
cannula compared with venepuncture: a	

systematic review and meta-analysis. J Adv Nurs. 2019;75(11):2313-39.	
95. Twibell KR, Hofstetter P, Siela D, et al. A comparative study of blood sampling from venipuncture and short peripheral catheters in pediatric inpatients. J Infus Nurs. 2019;42(5):237- 47.	-
96. Zhang Y, Zhang S, Chen J, et al. Blood sampling from peripherally inserted central catheter is effective and safe for patients with head and neck cancers. J Vasc Access. 2020 Aug 3; 1129729820943458. doi: 10.1177/1129729820943458. Online ahead of print.	-
97. Self WH, Speroff T, McNaughton CD, et al. Blood culture collection through peripheral intravenous catheters increases the risk of specimen contamination among adult emergency department patients. Infect Control Hosp Epidemiol. 2012;33(5):524-6.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 5242221/pdf/nihms841256.pdf
98. Kelly AM, Klim S. Taking blood cultures from a newly established intravenous catheter in the emergency department does not increase the rate of contaminated blood cultures. Emerg Med Australas. 2013;25(5):435-8.	-
99. Mulloy DF, Lee SM, Gregas M, et al. Effect of peripheral IV based blood collection on catheter dwell time, blood collection, and patient response. Appl Nurs Res. 2018;40:76-9.	https://www.sciencedirect.com/science/article/p ii/S0897189717303002

Recommendation 5.1

Citation	Open Access URL (where applicable)
101. Sriupayo A, Inta N, Boonkongrat S, et al. Effectiveness of peripheral vascular catheter care bundle in the pediatric nursing service, Chiang Mai university hospital, Thailand. Chiang Mai Medical Journal. 2014;53(2):63-73.	https://www.thaiscience.info/Journals/Article/C MMJ/10933704.pdf

 102. Watterson K, Hauck MJ, Auker A, et al. S.T.I.C.K.: a quality improvement pediatric IV infiltration prevention bundle. J Pediatr Nurs. 2018;41:38-41. 103. Rhodes D, Cheng AC, McLellan S, et al. Reducing staphylococcus aureus bloodstream infections associated with peripheral intravenous cannulae: successful implementation of a care bundle at a large Australian health service. J Hosp Infect. 2016;94(1):86-91. 	-
104. Wilder KA, Kuehn SC, Moore JE. Peripheral intravenous and central catheter algorithm: a proactive quality initiative. Adv Neonat Care. 2014;14(6):E3-7.	-
105. Mestre G, Berbel C, Tortajada P, et al. Successful multifaceted intervention aimed to reduce short peripheral venous catheter-related adverse events: a quasiexperimental cohort study. Am J Infect Control. 2013;41(6):520-6.	-
106. Saliba P, Hornero A, Cuervo G, et al. Interventions to decrease short-term peripheral venous catheter-related bloodstream infections: impact on incidence and mortality. J Hosp Infect. 2018;100(3):e178-e86.	-
107. Park SM, Jeong IS, Kim KL, et al. The effect of intravenous infiltration management program for hospitalized children. J Pediatr Nurs. 2016;31(2):172-8.	-
108. Kleidon TM, Cattanach P, Mihala G, et al. Implementation of a paediatric peripheral intravenous catheter care bundle: a quality improvement initiative. J Paediatr Child Health. 2019;55(10):1214-23.	-
109. Garcia-Gasalla M, Arrizabalaga-Asenjo M, Collado-Giner C, et al. Results of a multi-faceted educational intervention to prevent peripheral venous catheter-associated bloodstream infections. J Hosp Infect. 2019;102(4):449-53.	-

110. Maier D. To replace or not to replace? Replacing short peripheral catheters based on clinical indication. J Infus Nurs. 2019;42(3):143-8.	-
111. Tasdelen Y, Caglar S. Effect of intravenous infiltration management program on peripheral intravenous catheter success and infiltration in hospitalized infants. J Nurs Care Qual. 2020. doi: 10.1097/NCQ.000000000000511. Online ahead of print.	-
112. Gunasundram S, Tan M, Lim KZH, et al. Reducing the incidence of phlebitis in medical adult inpatients with peripheral venous catheter care bundle: a best practice implementation project. Int J Evid Based Health. 2020. doi: 10.1097/XEB.00000000000245. Online ahead of print.	-

Recommendation 6.1

Citation	Open Access URL (where applicable)
113. Liu L, Tan Y, Shangyingying L, et al. "Modified dynamic needle tip positioning" short- axis, out-of-plane, ultrasound-guided radial artery cannulation in neonates: a randomized controlled trial. Anesth Analg. 2019;129(1):178.	-
114. Gibbons R, Zanaboni A, Saravits SM, et al. Ultrasound guidance versus landmark-guided palpation for radial arterial line placement by novice emergency medicine interns: a randomized controlled trial. J Emerg Med. 2020;59(6):911-7.	-
115. Wang J, Lai Z, Weng X, et al. Modified long- axis in-plane ultrasound technique versus conventional palpation technique for radial arterial cannulation: a prospective randomized controlled trial. Medicine (Baltimore). 2020;99(2):e18747.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 6959944/
116. Wilson C, Rose D, Kelen GD, et al. Comparison of ultrasound-guided vs traditional	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 7081869/

arterial cannulation by emergency medicine residents. West J Emerg Med. 2020;21(2):353.	
117. Yu Y, Lu X, Fang W, et al. Ultrasound-guided artery cannulation technique versus palpation technique in adult patients in pre-anesthesia room: a randomized controlled trial. Med Sci Monit. 2019;25:7306-11.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 6784804/
118. Zhao W, Peng H, Li H, et al. Effects of ultrasound-guided techniques for radial arterial catheterization: a metaanalysis of randomized controlled trials. Am J Emerg Med. 2021;46:1-9.	-
119. Aouad-Maroun M, Raphael CK, Sayyid SK, et al. Ultrasound-guided arterial cannulation for paediatrics. Cochrane Database Syst Rev. 2016;9(9):CD011364.	https://www.cochranelibrary.com/cdsr/doi/10.1 002/14651858.CD011364.pub2/full
120. Anantasit N, Cheeptinnakorntaworn P, Khositseth A, et al. Ultrasound versus traditional palpation to guide radial artery cannulation in critically ill children: a randomized trial. J Ultrasound Med. 2017;36(12):2495-501.	https://onlinelibrary.wiley.com/doi/pdfdirect/10. 1002/jum.14291

Recommendation 6.2

Citation	Open Access URL (where applicable)
121. van Loon FHJ, Buise MP, Claassen JJF, et al. Comparison of ultrasound guidance with palpation and direct visualisation for peripheral vein cannulation in adult patients: a systematic review and meta-analysis. Br J Anaesth. 2018;121(2):358-66.	https://www.sciencedirect.com/science/article/p ii/S0007091218304525
122. Heinrichs J, Fritze Z, Vandermeer B, et al. Ultrasonographically guided peripheral intravenous cannulation of children and adults: a systematic review and meta-analysis. Ann Emerg Med. 2013;61(4):444-54.e1.	-
123. Gopalasingam N, Obad DS, Kristensen BS, et al. Ultrasound-guidance outperforms the palpation technique for peripheral venous catheterisation in anaesthetised toddlers: a	-

randomised study. Acta Anaesth Scand. 2017;61(6):601-8.	
124. Bridey C, Thilly N, Lefevre T, et al. Ultrasound-guided versus landmark approach for peripheral intravenous access by critical care nurses: a randomised controlled study. BMJ Open. 2018;8(6):e020220.	https://bmjopen.bmj.com/content/bmjopen/8/6 /e020220.full.pdf
125. Vinograd A, Chen A, Woodford AL, et al. Ultrasonographic guidance to improve first- attempt success in children with predicted difficult intravenous access in the emergency department: a randomized controlled trial. Ann Emerg Med. 2019;74(1):19.	-
126. McCarthy ML, Shokoohi H, Boniface KS, et al. Ultrasonography versus landmark for peripheral intravenous cannulation: a randomized controlled trial. Ann Emerg Med. 2016;68(1):10- 8.	-
127. The effect of the use of ultrasound in the success of peripheral venous catheterisation. Int Emerg Nurs. 2015;23(2):89-93.	-
128. Bahl A, Pandurangadu AV, Tucker J, et al. A randomized controlled trial assessing the use of ultrasound for nurse-performed IV placement in difficult access ED patients. Am J Emerg Med. 2016;34(10):1950-4.	-

Recommendation 7.1 and 7.2

Citation	Open Access URL (where applicable)
131. Samantaray A, Rao MH. Effects of fentanyl on procedural pain and discomfort associated with central venous catheter insertion: a prospective, randomized, double-blind, placebo controlled trial. Indian J Crit Care Med. 2014;18(7):421-6.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 4118506/
132. Zempsky WT, Schmitz ML, Meyer JM. Safety and efficacy of needle-free powder lidocaine delivery system in adult patients undergoing	-

venipuncture or peripheral venous cannulation: a	
trial. Clin J Pain. 2016;32(3):211-7.	
133. Bond M, Crathorne L, Peters J, et al. First do no harm: pain relief for the peripheral venous cannulation of adults, a systematic review and network meta-analysis. BMC Anesthesiol. 2016;16(1):81.	https://bmcanesthesiol.biomedcentral.com/articl es/10.1186/s12871-016-0252-8
134. Yin L, Jiang S. Evaluation of EMLA cream for relieving pain during needle insertion on totally implantable venous access device. J Vasc Access. 2018;19(6):634-8.	-
135. Salar A, Kiani F, Navidian A, et al. A comparative study on the effect of EMLA cream and diclofenac gel on pain caused by needle port placement in patients under chemotherapy: a clinical trial. Medical-Surgical Nursing Journal. 2018;7(1):1-6.	https://sites.kowsarpub.com/msnj/articles/7961 3.html
136. Babaieasl F, Yarandi HN, Saeidzadeh S, et al. Comparison of EMLA and diclofenac on reduction of pain and phlebitis caused by peripheral IV catheter: a randomized-controlled trial study. Home Healthc Now. 2019;37(1):17-22.	-
137. Kumar S, Sanjeev O, Agarwal A, et al. Double blind randomized control trial to evaluate the efficacy of ketoprofen patch to attenuate pain during venous cannulation. Korean J Pain. 2018;31(1):39-42.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 5780214/
138. Datema J, Veldhuis J, Bekhof J. Lidocaine spray as a local analgesic for intravenous cannulation: a randomized clinical trial. Eur J Emerg Med. 2019;26(1):24-8.	-
139. Zhu Y, Peng X, Wang S, et al. Vapocoolant spray versus placebo spray/no treatment for reducing pain from intravenous cannulation: a meta-analysis of randomized controlled trials. Am J Emerg Med. 2018;36(11):2085-92.	-

140. Yilmaz D, Heper Y, Gozler L. Effect of the Use of Buzzy© during Phlebotomy on Pain and Individual Satisfaction in Blood Donors. Pain Management Nursing. 2017;18(4):260-7.	-
141. Effect of the Buzzy® application on pain and injection satisfaction in adult patients receiving intramuscular injections. Pain Manag Nurs. 2018;19(6):645-51.	-
142. Redfern R, Micham J, Seegert S, et al. Influencing vaccinations: a Buzzy approach to ease the discomfort of a needle stick – a prospective, randomized controlled trial. Pain Manag Nurs. 2019;20(2):164.	-
143. Boerner KE, Birnie KA, Chambers CT, et al. Simple psychological interventions for reducing pain from common needle procedures in adults: systematic review of randomized and quasi- randomized controlled trials. Clin J Pain. 2015;31(10 Suppl):S90-8.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 4900414/
144. Yilmaz D, Gunes UY. The effect on pain of three different nonpharmacological methods in peripheral intravenous catheterisation in adults. J Clin Nurs. 2018;27(5-6):1073-80.	-
145. Jisha K, Latha S, Joseph G. A comparative study on impact of dry versus moist heat application on feasibility of peripheral intravenous cannulation among the patients of a selected hospital at Mangalore. Nitte University Journal of Health Science. 2017;7(3):21-4.	https://www.thieme- connect.com/products/ejournals/pdf/10.1055/s- 0040-1708719.pdf
146. Hosseinabadi R, Biranvand S, Pournia Y, et al. The effect of acupressure on pain and anxiety caused by venipuncture. J Infus Nurs. 2015;38(6):397-405.	-
147. Haynes JM. Randomized controlled trial of cryoanalgesia (ice bag) to reduce pain associated with arterial puncture. Respir Care. 2015;60(1):1- 5.	http://rc.rcjournal.com/content/60/1/1

148. Pagnucci N, Pagliaro S, Maccheroni C, et al. Reducing pain during emergency arterial sampling using three anesthetic methods: a randomized controlled clinical trial. J Emerg Med. 2020;58(6):857-63.	-
149. Vallejo de la Hoz G, Reglero Garcia L, Fernandez Aedo I, et al. Alternatives to subcutaneous injection of amino-amide or amino-ester anesthetics before arterial puncture for blood gas analysis: a systematic review. Emergencias. 2019;31(2):115-22.	-
150. Korkut S, Karadag SDZ. The effectiveness of local hot and cold applications on peripheral intravenous catheterization: a randomized controlled trial. J Perianesth Nurs. 2020;35(6):597-602.	-
151. Pakis Cetin S, Cevik K. Effects of vibration and cold application on pain and anxiety during intravenous catheterization. J Perianesth Nurs. 2019;34(4):701.	-
152. Yayla E, Ozdemir L. Effect of inhalation aromatherapy on procedural pain and anxiety after needle insertion into an implantable central venous port catheter: a quasi-randomized controlled pilot study. Cancer Nurs. 2019;42(1):35.	-
153. Akbari F, Rezaei MKA. Effect of peppermint essence on the pain and anxiety caused by intravenous catheterization in cardiac patients: a randomized controlled trial. J Pain Res. 2019;12:2933.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 6814313/
154. Basak T, Duman SDA. Distraction-based relief of pain associated with peripheral intravenous catheterisation in adults: a randomised controlled trial. J Clin Nurs. 2020;29(5-6):770.	-
155. Fusco N, Bernard F, Roelants F, et al. Hypnosis and communication reduce pain and anxiety in peripheral intravenous cannulation:	https://www.sciencedirect.com/science/article/p ii/S000709121930892X

effect of language and confusion on pain during peripheral intravenous catheterization (KTHYPE), a multicentre randomised trial. Br J Anaesth. 2020;124(3):292.	
156. Hall LM, Ediriweera Y, Banks J, et al. Cooling to reduce the pain associated with vaccination: a systematic review. Vaccine. 2020;38(51):8082-9.	-
158. Sridharan K, Sivaramakrishnan G. Pharmacological interventions for reducing pain related to immunization or intramuscular injection in children: a mixed treatment comparison network meta-analysis of randomized controlled clinical trials. J Child Health Care. 2018;22(3):393-405.	-
159. Shahid S, Florez ID, Mbuagbaw L. Efficacy and safety of EMLA cream for pain control due to venipuncture in infants: a meta-analysis. Pediatrics. 2019;143(1):e20181173.	https://pediatrics.aappublications.org/content/p ediatrics/143/1/e20181173.full.pdf
160. Kassab M, Foster JP, Foureur M, et al. Sweet-tasting solutions for needle-related procedural pain in infants one month to one year of age. Cochrane Database Syst Rev. 2012 Dec 12;12(12):CD008411.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 6369933/
161. Harrison D, Reszel J, Bueno M, et al. Breastfeeding for procedural pain in infants beyond the neonatal period. Cochrane Database Syst Rev. 2016 Oct 28;10(10):CD011248.	https://www.cochranelibrary.com/cdsr/doi/10.1 002/14651858.CD011248.pub2/abstract
162. Taddio A, Shah V, McMurtry CM, et al. Procedural and physical interventions for vaccine injections: systematic review of randomized controlled trials and quasi-randomized controlled trials. Clin J Pain. 2015;31(10 Suppl):S20-37.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 4900423/
163. Harrison D, Yamada J, Adams-Webber T, et al. Sweet tasting solutions for reduction of needle-related procedural pain in children aged one to 16 years. Cochrane Database Syst Rev. 2015(5):CD008408.	https://www.cochranelibrary.com/cdsr/doi/10.1 002/14651858.CD008408.pub3/full

164. Birnie KA, Noel M, Chambers CT, et al. Psychological interventions for needle-related procedural pain and distress in children and adolescents. Cochrane Database Syst Rev. 2018(10): CD005179.	https://www.cochranelibrary.com/cdsr/doi/10.1 002/14651858.CD005179.pub4/full
165. Pillai Riddell R, Taddio A, McMurtry CM, et al. Psychological interventions for vaccine injections in young children 0 to 3 years: systematic review of randomized controlled trials and quasi-randomized controlled trials. Clin J Pain. 2015;31(10 Suppl):S64-71.	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 4900410/
166. Ueki S, Yamagami Y, Makimoto K. Effectiveness of vibratory stimulation on needle- related procedural pain in children: a systematic review. JBI Database System Rev Implement Rep. 2019;17(7):1428-63.	-
167. Zhang S, Su F, Li J, et al. The analgesic effects of maternal milk odor on newborns: a meta- analysis. Breastfeeding Med. 2018;13(5):327-34.	-
168. Inal S, Kelleci M. The effect of external thermomechanical stimulation and distraction on reducing pain experienced by children during blood drawing. Pediatr Emerg Care. 2020;36(2):66-9.	-
169. Rakshith V, Rajan A, Aroor AR. Eutectic mixture of prilocaine and lignocaine (2.5%) versus 5% lignocaine versus placebo for pain relief in new-borns undergoing venipuncture: a hospital based, double blind randomised case control study. Int J Contemp Pediatrics. 2019;6(3):1014.	-
170. Chang J, Filoteo L, Nasr AS. Comparing the analgesic effects of 4 nonpharmacologic interventions on term newborns undergoing heel lance: a randomized controlled trial. J Perinat Neonatal Nurs. 2020;34(4):338-45.	-
171. Chen YJ, Cheng SF, Lee PC, et al. Distraction using virtual reality for children during intravenous injections in an emergency	-

department: a randomised trial. J Clin Nurs. 2020;29(3-4):503-10.	
172. Topcu SY, Kostak MA, Semerci R, et al. Effect of gum chewing on pain and anxiety in Turkish children during intravenous cannulation: a randomized controlled study. J Pediatr Nurs. 2020;52:e26-e32.	-
173. Reducing pain and fear in children during venipuncture: a randomized controlled study. Pain Manag Nurs. 2020;21(3):276-82.	-
174. Arıkan A, Esenay FI. Active and passive distraction interventions in a pediatric emergency department to reduce the pain and anxiety during venous blood sampling: a randomized clinical trial. J Emerg Nurs. 2020;46(6):779-90.	-
175. Semerci R, Akgün Kostak M, Eren T, et al. Effects of virtual reality on pain during venous port access in pediatric oncology patients: a randomized controlled study. J Pediatr Oncol Nurs. 2021;38(2):142-151.	-
176. KarabykOgurlu O, TuralBuyuk EYO. The effect of warm compression applied before heel lance on pain level, comfort level and procedure time in healthy term newborns: a randomized clinical trial. Journal of midwifery & reproductive health. 2020;8(3):1	-
177. Kuc-uk Alemdar D, Yaman Aktas Y. The use of the buzzy, jet lidokaine, bubble-blowing and aromatherapy for reducing pediatric pain, stress and fear associated with phlebotomy. J Pediatr Nurs. 2019;30:30.	-
178. Taddio A, Pillai RR, Ipp M, et al. Relative effectiveness of additive pain interventions during vaccination in infants. CMAJ. 2017;189(6):E227-34.	https://www.cmaj.ca/content/cmaj/189/6/E227. full.pdf
179. Binay S, Bilsin E, Gerceker GO, et al. Comparison of the effectiveness of two different methods of decreasing pain during phlebotomy in	-

children: a randomized controlled trial. J Perianesth Nurs. 2019;20:20.	
180. Bergomi P, Scudeller L, Pintaldi S, et al. Efficacy of non-pharmacological methods of pain management in children undergoing venipuncture in a pediatric outpatient clinic: a randomized controlled trial of audiovisual distraction and external cold and vibration. J Pediatr Nurs. 2018;42:e66-72.	-
181. Lee VY, Booy R, Skinner R, et al. The effect of exercise on vaccine-related pain, anxiety and fear during HPV vaccinations in adolescents. Vaccine. 2018;36(23):3254-9.	-
182. Zhu J, Hong-Gu H, Zhou X, et al. Pain relief effect of breast feeding and music therapy during heel lance for healthy-term neonates in China: a randomized controlled trial. Midwifery. 2015;31(3):365-72.	-
183. Dabas P. Effectiveness of distraction techniques on pain intensity during immunization among infants. Int J Nurs Educ. 2019;11(1):5-9.	-
184. Tunc-Tuna P, Acikgoz A. The effect of preintervention preparation on pain and anxiety related to peripheral cannulation procedures in children. Pain Manag Nurs. 2015;16(6):846-54.	-
185. Vagnoli L, Caprilli S, Vernucci C, et al. Can presence of a dog reduce pain and distress in children during venipuncture? Pain Manag Nurs. 2015;16(2):89-95.	-
186. Inan G, Inal S. The impact of 3 different distraction techniques on the pain and anxiety levels of children during venipuncture: a clinical trial. Clin J Pain. 2019;35(2):140-7.	-
187. Gold JI, Mahrer NE. Is virtual reality ready for prime time in the medical space? A randomized control trial of pediatric virtual reality for acute procedural pain management. J Pediatr Psychol. 2018;43(3):266-75.	-

Г

1

188. Orhan E, Yildiz S. The effects of pre- intervention training provided through therapeutic play on the anxiety of pediatric oncology patients during peripheral catheterization. Int J Car Sci. 2017;10(3):1533-44.	http://www.internationaljournalofcaringsciences. org/docs/47 orhan original 10 3.pdf
189. Kuo HC, Pan HH, Creedy DK, et al. Distraction-based interventions for children undergoing venipuncture procedures: a randomized controlled study. Clin Nurs Res. 2018;27(4):467-82.	-
190. Gerceker GO, Binay S, Bilsin E, et al. Effects of virtual reality and external cold and vibration on pain in 7- to 12-year-old children during phlebotomy: a randomized controlled trial. J Perianesth Nurs. 2018;33(6):981-9.	-
191. Koc Ozkan T, Polat F. The effect of virtual reality and kaleidoscope on pain and anxiety levels during venipuncture in children. J Perianesth Nurs. 2020;35(2):206.	-
192. Inangil D, Sendir MBF. Efficacy of cartoon viewing devices during phlebotomy in children: a randomized controlled trial. J Perianesth Nurs. 2020;35(4):407.	-
193. Semerci R, Akgun Kostak M. The efficacy of distraction cards and kaleidoscope for reducing pain during phlebotomy: a randomized controlled trial. J Perianesth Nurs. 2020;35(4):397.	-
194. Aydn A, Ozyazcoglu N. Using a virtual reality headset to decrease pain felt during a venipuncture procedure in children. J Perianesth Nurs. 2019;34(6):1215.	-
195. Düzkaya D, Bozkurt G, Ulupinar S, et al. The effect of a cartoon and an information video about intravenous insertion on pain and fear in children aged 6 to 12 years in the pediatric emergency unit: a randomized controlled trial. J Emerg Nurs. 2020;47(1):76-87.	-

196. Wong C, Li C, Chant CWH, et al. Virtual reality intervention targeting pain and anxiety among pediatric cancer patients undergoing peripheral intravenous cannulation: a randomized controlled trial. Cancer Nurs. 2020. doi: 10.1097/NCC.00000000000844. Online ahead of print.	-
197. Razaghi N, Aemmi S, Hoseini AS, et al. The effectiveness of familiar olfactory stimulation with lavender scent and glucose on the pain of blood sampling in term neonates: a randomized controlled clinical trial. Complement Ther Med. 2020;49:102289.	-
198. Canbulat Sahiner N, Inal S, Sevim Akbay A. The effect of combined stimulation of external cold and vibration during immunization on pain and anxiety levels in children. J Perianesth Nurs. 2015;30(3):228-35.	-
199. Desjardins MP, Gaucher N, Curtis S, et al. A randomized controlled trial evaluating the efficacy of oral sucrose in infants 1 to 3 months old needing intravenous cannulation. Acad Emerg Med. 2016;23(9):1048-53.	https://onlinelibrary.wiley.com/doi/10.1111/ace m.12991
200. Wilson S, Bremner AP, Mathews J, et al. The use of oral sucrose for procedural pain relief in infants up to six months of age: a randomized controlled trial. Pain Manag Nurs. 2013;14(4):e95-e105.	-
201. Liu M, Zhao L, Li XF. Effect of skin contact between mother and child in pain relief of full- term newborns during heel blood collection. Clin Exp Obstet Gynecol. 2015;42(3):304-8.	-
202. Hashemi F, Taheri L, Ghodsbin F, et al. Comparing the effect of swaddling and breastfeeding and their combined effect on the pain induced by BCG vaccination in infants	-

203. Erkul M, Efe E. Efficacy of breastfeeding on babies' pain during vaccinations. Breastfeed Med. 2017;12:110-5.	-
204. Gol I, Altug Ozsoy S. Effects of rapid vaccine injection without aspiration and applying manual pressure before vaccination on pain and crying time in infants. Worldviews Evid Based Nurs. 2017;14(2):154-62.	-
205. Caglar S, Buyukyilmaz F, Cosansu G, et al. Effectiveness of ShotBlocker for immunization pain in full-term neonates: a randomized controlled trial. J Perinat Neonatal Nurs. 2017;31(2):166-71.	-
206. Erkut Z, Yildiz S. The effect of swaddling on pain, vital signs, and crying duration during heel lance in newborns. Pain Manag Nurs. 2017;18(5):328-36.	-
207. Gouin S, Gaucher N, Lebel D, et al. A randomized double-blind trial comparing the effect on pain of an oral sucrose solution vs. placebo in children 1 to 3 months old undergoing simple venipuncture. J Emerg Med. 2018;54(1):33-9.	-
208. Modarres M, Jazayeri A, Rahnama P, et al. Breastfeeding and pain relief in full-term neonates during immunization injections: a clinical randomized trial. BMC Anesthesiol. 2013;13(1):22.	https://bmcanesthesiol.biomedcentral.com/articl es/10.1186/1471-2253-13-22
209. Gad R, Dowling D, Abusaad FE, et al. Oral sucrose versus breastfeeding in managing infants' immunizationrelated pain: a randomized controlled trial. MCN Am J Mat Child Nurs. 2019;44(2):108.	-
210. Karaca Ciftci E, Kardas Ozdemir F, Aydın D. Effect of flick application on pain level and duration of crying during infant vaccination. Ital J Pediatr. 2016;42:1-6.	https://link.springer.com/article/10.1186/s13052 -016-0218-γ

-
-
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 4253236/
-
https://www.sciencedirect.com/science/article/p ii/S1875957219304887
-
-
-

219. Beiranvand S, Faraji Goodarzi M, Firouzi M. The effects of caressing and hugging infants to manage the pain during venipuncture. Compr Child Adolesc Nurs. 2020;43(2):142-50.	-
220. The effects of acupressure and foot massage on pain during heel lancing in neonates: a randomized controlled trial. Complement Ther Med. 2019;46:103.	-
221. Marseglia L, Manti S, D'Angelo G, et al. Potential use of melatonin in procedural anxiety and pain in children undergoing blood withdrawal. J Biol Regul Homeost Agents. 2015;29(2):509-14.	-
222. Pour PS, Ameri GF, Kazemi M, et al. Comparison of effects of local anesthesia and two-point acupressure on the severity of venipuncture pain among hospitalized 6-12-year- old children. J Acupunct. 2017;10(3):187-92.	https://www.sciencedirect.com/science/article/p ii/S2005290116301388